PAUTA ACTIVIDADES: ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Y BALANZAS
- Lorenzo Castellanos Ortega
- hace 3 años
- Vistas:
Transcripción
1 PAUTA ACTIVIDADES: ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Y BALANZAS Ejercicio 1: Observa la siguiente imagen que muestra una balanza desequilibrada. En esta balanza, cada cilindro pesa 10 kg y cada cubo pesa 5 kg. a) Explica por qué la balanza no está en equilibrio Porque en el lado izquierdo de la balanza hay dos cilindros y un cubo, en cambio en el lado derecho hay un cilindro y un cubo. En el lado izquierdo hay más peso que en el lado derecho y obviamente eso hace que la balanza esté inclinada hacia el lado izquierdo b) Cuál es el peso que tiene cada lado de la balanza?...en el lado derecho hay 15 kg y en el lado izquierdo 25 kg c) Qué harías para lograr que la balanza quede en equilibrio?, explica.se podría colocar al lado derecho más objetos para equilibrar la balanza, por ejemplo colocar otro cilindro... d) Existe sólo una forma de lograr el equilibrio?, explica No, no existe solo una forma ya que se puede equilibrar también, agregando dos cubos o quitando un cilindro 1
2 Ejercicio 2: Observa la siguiente balanza. En ella cada cilindro pesa 15 kg, cada cubo pesa 8 kg y cada cono pesa 12 kg. a) Si suponemos que esta pirámide pesa 20 kilogramos, cuál es el peso que existe a cada lado de la balanza?...en el lado izquierdo hay 55 kg y en el lado derecho hay 42 kg.... b) Cuánto debe pesar la pirámide para que se mantenga el equilibrio?...en el lado izquierdo debiésemos colocar una pirámide que pese 7 kg, de ese modo en ambos lados habría un peso de 42 kg y quedaría equilibrada la balanza. c) Cómo obtuviste el peso de la pirámide? Explica En el lado derecho, los objetos pesan en total 42 kg y en el lado izquierdo entre el cilindro, el cono y el cubo tenemos 35 kg. Luego resto: y obtengo el peso que debiese tener la pirámide, 7 kg.. d) Dibuja cómo quedaría la balanza equilibrada. Escribe el peso de cada objeto 2
3 Ejercicio 3: Observa las siguientes balanzas. Cada cilindro pesa 10 kg, cada pirámide pesa 20 kg y cada cubo pesa 5 kg. Dibuja en el recuadro una balanza equilibrada colocando los objetos que faltan. Guíate por el ejemplo. Puede haber más de una respuesta posible. Ejemplo: 3
4 Podemos resolver ecuaciones representando igualdades por balanzas en equilibrio. Por ejemplo una igualdad numérica como: = estaría representada como: La ecuación 2x+3 =9 la podemos representar utilizando una balanza como: Si sacamos 3 del lado izquierdo de la balanza, esta se desequilibra: Luego para mantener la igualdad tengo que sacar la misma cantidad en el lado derecho de la balanza. 4
5 Podemos escribir la igualdad anterior como: Luego la balanza estará equilibrada si quito x de la izquierda y 3 de la derecha: Por lo tanto podemos concluir que x=3 es la solución de la ecuación 2x+3=9. Ejercicio 4: Resuelve las siguientes ecuaciones en tu cuaderno utilizando balanzas: a) 3x + 2 = 14 b) 2 x + 8 = 20 5
6 a) Respuesta: A continuación se muestra la resolución de la ecuación 3x+2 = 14 utilizando balanzas: Luego quitamos el bloque de 2 kg en el lado izquierdo y para mantener la igualdad debemos colocar un bloque al lado derecho de menos peso (lo que quitamos en el lado izquierdo, debemos quitarlo en el lado derecho): Luego descomponemos el bloque de 12 kg del lado derecho de modo que se siga manteniendo la igualdad: Como se mantiene la igualdad podemos decir que cada bloque de la izquierda pesa lo mismo que cada bloque de la derecha, luego si elimino dos bloques de la derecha y dos bloques de la izquierda se sigue manteniendo la igualdad, entonces: Por lo tanto podemos concluir que x=4 es la solución de la ecuación 3x+2 = 14. 6
7 b) Respuesta: A continuación se muestra la resolución de la ecuación 2x +8 = 20 utilizando balanzas: Luego quitamos el bloque de 8 kg en el lado izquierdo y para mantener la igualdad debemos colocar un bloque al lado derecho de menos peso (lo que quitamos en el lado izquierdo, debemos quitarlo en el lado derecho): Luego descomponemos el bloque de 12 kg del lado derecho de modo que se siga manteniendo la igualdad: Como se mantiene la igualdad podemos decir que cada bloque de la izquierda pesa lo mismo que cada bloque de la derecha, luego si elimino un bloque de la derecha y un bloque de la izquierda se sigue manteniendo la igualdad, entonces: Por lo tanto podemos concluir que x=6 es la solución de la ecuación 2x +8 = 20. Elaborado por: Fabiola Sotelo A. 7
Matemática. Cuaderno de Trabajo. Clase 5. Investigando patrones, igualdades y desigualdades
Cuaderno de Trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Clase 5 Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales
MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO
% & 2 MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO / Investigando patrones, igualdades y desigualdades CLASE CUADERNO DE TRABAJO Cuaderno
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación
Salvemos a los animales en extinción
Salvemos a los animales en extinción En esta sesión se espera que los niños y las niñas empleen estrategias de ensayo y error para encontrar los valores desconocidos de una igualdad. Antes de la sesión
GUIA UNIDAD AGOSTO. Nombre: Fecha: Objetivos de aprendizajes
Colegio Saint Louis School Departamento de Matemática GUIA UNIDAD AGOSTO Nombre: Fecha: Objetivos de aprendizajes Resolver adiciones y sustracciones de fracciones con igual denominador (denominadores 100,
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones
Álgebra En esta unidad usted aprenderá a: Al aprender lo anterior usted podrá:
Álgebra IVEn Unidad IV esta unidad usted aprenderá a: Aplicar el concepto de igualdad en una ecuación. Plantear ecuaciones con una o varias incógnitas. Conocer las características de algunos cuerpos geométricos
Buscando el equilibrio con balanzas
QUINTO Grado - Unidad 3 - Sesión 07 Buscando el equilibrio con balanzas En esta sesión, se espera que los niños y las niñas representen el valor desconocido de una igualdad en problemas con balanzas, e
VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico
I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.
ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio
ECUACIONES DE PRIMER GRADO
ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo
La suma y la resta. Introducción. Capítulo
Capítulo II La suma y la resta Introducción En el capítulo anterior, vimos que los números permiten expresar la cantidad de objetos que tiene una colección. Juntar dos o más colecciones, agregar objetos
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S
PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA Valor del dinero en el tiempo Conceptos de capitalización y descuento Ecuaciones de equivalencia financiera Ejercicio de reestructuración de deuda T E M A
6 Ecuaciones de 1. er y 2. o grado
8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados
TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.
TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que
La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1
SEI.2.A1.1-Solving Equations-Student Learning Expectation. La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1 En esta lección aprenderemos
Apoyo compartido. Matemática Período 3 CUADERNO DE TRABAJO BÁSICO
Apoyo compartido Matemática Período 3 CUADERNO DE TRABAJO 4º BÁSICO 4 Cuaderno de trabajo Matemática 4º Básico, Período 3 NIVEL DE EDUCACIÓN BÁSICA División de Educación General Ministerio de Educación
EXAMEN DE ECUACIONES E INECUACIONES
EXAMEN DE ECUACIONES E INECUACIONES Se recomienda: a) Antes de hacer algo, lee todo el eamen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta.
ECUACIONES FRACCIONARIAS
ECUACIONES FRACCIONARIAS Ejemplos. Resolver la ecuación Solución. equivalente a la original, de miembros sea. cada epresión fraccionaria. El dominio de las epresiones es IR. y S . Resuelva la ecuación
a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7
1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)
Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?
2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
3.2. COMO RESOLVER UN PROBLEMA EN UN EXAMEN DE FÍSICA
52 3.2. COMO RESOLVER UN PROBLEMA EN UN EXAMEN DE FÍSICA Prfa. Ana María ALVAREZ GARCIA Prof. Jesús Mª GÓMEZ GOÑI Actitud ante un examen (problemas). -1º-Para la preparación estudiar teoría. -2º.Leer el
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES
ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES La materia se estructurará en dos partes. Los alumnos que tengan en la primera evaluación menos de un cuatro deberán hacer el martes de Febrero
5 Ecuaciones lineales y conceptos elementales de funciones
Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales
HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh
6 Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer situaciones que pueden resolverse con ecuaciones Traducir al lenguaje matemático enunciados del lenguaje ordinario. Conocer los elementos
secundaria Solucionario desarrollado
secundaria FUNDAMENTAL Solucionario desarrollado Presentación Estimado maestro: En la búsqueda de facilitar la labor docente, Ediciones Castillo pone a su alcance el presente Solucionario desarrollado
Ecuaciones de segundo grado
3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver
Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24
1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000
Sistemas de ecuaciones
Sistemas de ecuaciones Cuando aparecen varias incógnitas en un problema, resulta más sencillo resolverlo planteando más de una ecuación con más de una incógnita. Un sistema de ecuaciones es un conjunto
Sistemas de dos ecuaciones lineales con dos incógnitas
Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria
DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR
DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR a las personas jóvenes y adultas que requieren presentar el examen de OPERACIONES AVANZADAS 1 NÚMEROS CON SIGNO. Los
Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es
Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................
Para resolver estos problemas podemos seguir tres pasos:
RESOLUCIÓN DE PROBLEMAS Algunos problemas pueden resolverse empleando sistemas de dos ecuaciones de primer grado con dos incógnitas. Muchas veces se pueden resolver utilizando una sola ecuación con una
EJERCICIOS SOBRE : ECUACIONES DE PRIMER GRADO
1.- Igualdades. Las expresiones en donde aparecen el signo =, se llaman igualdades. Ejemplo: 5 = 7-2 ; x + 2 = 9 Toda igualdad consta de dos miembros, el primer miembro ( lo escrito antes del signo igual
Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media
Indicadores para la Evaluación Proceso 2014 D.S- 211/ Matemática / Primer Ciclo Educación Media Este instrumento presenta los indicadores de evaluación del proceso 2014 de la Modalidad Flexible de Estudios;
ACTIVIDADES DE NUMERACIÓN
DEL 100 AL 1 1 Escribe del 100 al 10 en tu cuaderno 100-101 - 10-5 Escribe de 5 en 5 desde el 10 al 160 Y hacia atrás de 5 en 5 desde el 10 al 160 6Escribe el nombre de 7 8 Escribe hacia atrás del 150
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3 3 3 7 4. Escribe
Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica
Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas
Ecuaciones con Radicales
www.matebrunca.com Prof. Waldo Márquez González Ecuaciones con Radicales 1 Ecuaciones con Radicales Usaremos la siguiente propiedad para resolver estas ecuaciones: Cualquier raíz de una ecuación dada,
OBJETIVO 4 RESOLVER SISTEMAS MEDIANTE EL MÉTODO DE REDUCCIÓN
OBJETIVO 4 RESOLVER SISTEMAS MEDIANTE EL MÉTODO DE REDUCCIÓN 5 NOMBRE: CURSO: FECHA: Para resolver un sistema de dos ecuaciones con dos incógnitas por el método de reducción: a) Buscar un sistema equivalente
Dibujando y construyendo
Quinto GRADO - Unidad 2 - Sesión 13 Dibujando y construyendo En esta sesión se espera que los niños y las niñas dibujen, a medida, las diferentes vistas de prismas y pirámides. Antes de la sesión Dibujar
SOBRE PALANCAS, POLEAS Y
SOBRE PALANCAS, POLEAS Y GARRUCHAS Por Ignacio Cristi 1. PALANCAS 2. POLEAS 3. APAREJOS O GARRUCHAS SANTIAGO DE CHILE AGOSTO 2003 1 1. PALANCAS: La palanca es una barra rígida que puede girar alrededor
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
Ecuaciones de primer y segundo grado
Igualdad Ecuaciones de primer y segundo grado Una igualdad se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2.
Plan de Clase Diario. Maestro Asignatura Duración No. Asesoría Fecha Pedro Vázquez Matemáticas 2 horas 16 y 17 17 Abril 2011
Pedro Vázquez Matemáticas 2 horas 16 y 17 17 Abril 2011 Multiplicación y División de Números decimales Que el alumno desarrolle la habilidad de manejar y resolver operaciones con números decimales, por
ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene
8 UNIDAD I. A modo de repaso. Preliminares Inecuaciones Una inecuación es una desigualdad en la que el criterio de comparación es la relación de orden inherente al conjunto de los números reales. Hay que
Plan de clase (1/3) Intenciones didácticas: Que los alumnos estimen y relacionen el volumen de conos y cilindros.
Plan de clase (1/3) Escuela: Fecha: Profesor (a): Curso: Matemáticas 9 Eje temático: FE y M Contenido: 9.5.4 Estimación y cálculo del volumen de cilindros y conos o de cualquiera de las variables implicadas
GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES.
GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. D E C I M A L E S MARÍA LUCÍA BRIONES PODADERA PROFESORA DE MATEMÁTICAS UNIVERSIDAD DE CHILE. 38 Si tenemos el número 4,762135 la ubicación de cada
7 ECUACIONES. SISTEMAS DE ECUACIONES
EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0. c) Un número más su quinta parte es.
PROBLEMAS RESUELTOS TEMA: 3
PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado
Reduce expresiones algebraicas (páginas 469 473)
A NOMRE FECHA PERÍODO Reduce expresiones algebraicas (páginas 469 473) Reduce expresiones algebraicas Los expresiones 3(x 4) 3x 2 son expresiones equivalentes, porque tienen el mismo valor sin importar
Un Bisector Perpendicular puede ser una línea, una raya, y otro segmento.
CGT.5.G.4-Pam Beach- Equations of Perpendicular Bisectors of Segments. La lección de hoy es sobre Ecuaciones de Bisectores Perpendiculares y segmentos. El cuál es la expectativa para el aprendizaje del
Área de desarrollo: Razonamiento matemático Nivel: Básico Proceso mental: Análisis
Proceso mental: Análisis Lee cada uno de los problemas y escribe sobre las rayas el dato faltante. Para encontrar la cantidad faltante, realiza las operaciones necesarias, tomando en cuenta que cada problema
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible.
PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES º ESO 009 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. 1 A = 8 1 + 1 B = A = 8 1 = 8 = 8 = 6 4 B = = 4 4 = 4 16
Actividades para empezar bien el día. Preescolar. Matemáticas
Actividades para empezar bien el día Preescolar Matemáticas Armamos rompecabezas Los alumnos arman rompecabezas clásicos, modelos con el tangram y con cuadros bicolores. Disponer de material suficiente
IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO
IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado
BREVE MANUAL DE SOLVER
BREVE MANUAL DE SOLVER PROFESOR: DAVID LAHOZ ARNEDO PROGRAMACIÓN LINEAL Definición: Un problema se define de programación lineal si se busca calcular el máximo o el mínimo de una función lineal, la relación
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x
SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA
SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO
FRICCIÓN TRABAJO Y POTENCIA.
INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II PRÁCTICA No. 10 FRICCIÓN TRABAJO Y POTENCIA. NOMBRE. GRUPO. No. BOLETA. FECHA. EQUIPO No. ASISTENCIA. BATA. REPORTE.
Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y
IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (
Universidad de la Frontera
Universidad de la Frontera Facultad de Ingeniería, Ciencias y Admistración Departamento de Matemática Actividad Didáctica: El Abaco TALLER # 2 - Sistema Decimal El ábaco es uno de los recursos más antiguos
1. Lección 5 - Comparación y Sustitución de capitales
Apuntes: Matemáticas Financieras 1. Lección 5 - Comparación y Sustitución de capitales 1.1. Comparación de Capitales Se dice que dos capitales son equivalentes cuando tienen el mismo valor en la fecha
ECUACIONES DIFERENCIALES ORDINARIAS, MAT1532 SEGUNDA INTERROGACIÓN
ECUACIONES DIFERENCIALES ORDINARIAS, MAT53 SEGUNDA INTERROGACIÓN PROFESORES ISABEL FLORES Y ROLANDO REBOLLEDO Ejercicio. [5%] () Resuelva x 6x + 9x = t. () Considere el sistema: x = x + z y = y z = y 3z.
Nombre y apellidos:... Curso:... Fecha:... ECUACIONES. SOLUCIÓN 8 x = 5 porque. MULTIPLICAR POR EL m.c.m. RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO
6 Ecuaciones Esquema de la unidad Curso:... Fecha:... ECUACIONES NOMENCLATURA PRIMER MIEMBRO 2x 4 + 11 Resolver una ecuación es calcular...... 2x 4 + 11 SOLUCIÓN 8 5 porque 2 5 4 + 5 = x + a = b TRANSPOSICIÓN
Crecimiento y desarrollo de niños y niñas
PACHAMAMA RAYMI Crecimiento y desarrollo de niños y niñas Folleto no. 3 Agosto 2006-1 - Crecimiento y desarrollo de niños y niñas Niños y niñas sanos crecen bien, pero cuánto? Cómo saber si sus hijos están
Sistema Ventanilla Manual Solicitud Compra DIMERC
Sistema Ventanilla Manual Solicitud Compra DIMERC Unidad de Sistemas Valparaíso, 2015 Manual Solicitud de Compra DIMERC En este manual explicaremos de manera simple, los pasos a seguir para realizar un
Página 1 de 13 PLATAFORMA HELVIA. ADMINISTRACIÓN GENERAL: Manual de la Administración General
Página 1 de 13 PLATAFORMA HELVIA ADMINISTRACIÓN GENERAL: Manual de la Administración General Se accede como webmaster: 1. Habilitar o deshabilitar algún módulo 2. Habilitar usuarios para administrar el
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
1. HABILIDAD MATEMÁTICA
HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por
4 INECUACIONES Y SISTEMAS
4 INECUACINES SISTEMAS EJERCICIS PRPUESTS 4. Escribe las siguientes informaciones utilizando desigualdades. a) He sacado, por lo menos, un 7 en el examen. b) Tengo tarifa plana de ADSL de ocho de la mañana
Ya sabes resolver (x+3) 2 =4?
Ya sabes resolver (+) =? Copyright 01, MatematicaTuya Derechos reservados 1 Tomar raíz a ambos miembros de la ecuación 1 Se despeja Sabiendo que la raíz negativa aporta otra solución Se tiene dos soluciones
5 o. Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas. MATEMÁTICA Cuaderno de trabajo
Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Cuaderno de trabajo 5 o Módulo Nº 1: Operaciones combinadas: estrategias de cálculo y problemas MATEMÁTICA Cuaderno de
EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25
2 NÚMEROS ENTEROS EJERCICIOS PROPUESTOS 2.1 Expresa con un número entero las siguientes informaciones. a) El avión está volando a 9 500 metros de altura. b) La temperatura mínima de ayer fue de 3 C bajo
Recuerda Para realizar bien las multiplicaciones, repasa las tablas de multiplicar.
Recuerda Para realizar bien las multiplicaciones, repasa las tablas de multiplicar. La multiplicación es una suma de números iguales. Los términos de la multiplicación son los factores y el producto. -.
Función exponencial y Logaritmos
Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes
EJEMPLOS DE CUESTIONES DE EVALUACIÓN
EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes
Consume mucha energía?
Nivel: 3.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Consume mucha energía? Cada año las personas utilizan más aparatos que funcionan con electricidad, los cuales dan comodidad, ahorran
PLAN DE APOYO PARA MEJORAR LOS APRENDIZAJES
PLAN DE APOYO PARA MEJORAR LOS APRENDIZAJES EDUCACIÓN MATEMÁTICA TERCER AÑO BÁSICO MINISTERIO DE EDUCACIÓN Números de hasta 6 cifras terminados en 3 ceros MINISTERIO DE EDUCACIÓN NIVEL DE EDUCACIÓN BÁSICA
EXAMEN DE SISTEMAS DE ECUACIONES
EXAMEN DE SISTEMAS DE ECUACIONES Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta.
Medimos pesos usando el kilogramo
TERCER Grado - Unidad 4 - Sesión 03 Medimos pesos usando el kilogramo En esta sesión, se espera que los niños y las niñas aprendan a usar una balanza para medir la masa y a expresar medidas en kilogramos.
TEMA 1. MANEJO DE PROCESADOR DE TEXTOS: Microsoft WORD 2003
TEMA 1. MANEJO DE PROCESADOR DE TEXTOS: Microsoft WORD 2003 TEMA 1. MANEJO DE PROCESADOR DE TEXTOS: MICROSOFT WORD 2003...1 1. ESTILOS Y FORMATOS...1 1.1. Estilos...1 1.2. Niveles...2 1.3. Secciones...2
PROPORCIONALIDAD - teoría
PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos
Cuántos pasajeros llegaron en el bus?
TERCER GRADO UNIDAD 2 SESIÓN 02 Cuántos pasajeros llegaron en el bus? En esta sesión, los niños y las niñas experimentarán con las operaciones de adición y sustracción, relacionándolas con las acciones
Polinomios y fracciones
BLOQUE II Álgebra 3. Polinomios y fracciones algebraicas 4. Resolución de ecuaciones 5. Sistemas de ecuaciones 6. Inecuaciones y sistemas de inecuaciones 3 Polinomios y fracciones algebraicas. Binomio
FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos:
FUNCIÓN CUADRÁTICA Una función cuadrática es una función polinómica de segundo grado de la forma y=ax +bx+c, cuya gráfica es una parábola de eje vertical, donde a representa la abertura de la parábola.
CUADERNIA 2.0. CÓMO INSTALAR CUADERNIA 2.0 Para instalar Cuadernia debemos seguir los siguientes pasos:
CUADERNIA 2.0 Se trata de una herramienta fácil y funcional que nos permite crear de forma dinámica ebooks o libros digitales en forma de cuadernos compuestos por contenidos multimedia y actividades educativas
Nº 3 NÚMEROS Y LETRAS: LA CLAVE PARA RESOLVER PROBLEMAS COTIDIANOS
Guía de Aprendizaje Nº 3 NÚMEROS Y LETRAS: LA CLAVE PARA RESOLVER PROBLEMAS COTIDIANOS Educación Matemática Primer nivel o ciclo de Educación Media Educación para Personas Jóvenes y Adultas DE_6004.indd
FUNCIONES 1. DEFINICION DOMINIO Y RANGO
1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad
Módulo Nº 3: Números decimales. MATEMÁTICA Guía didáctica. 5 o
Módulo Nº 3: Números decimales MATEMÁTICA Guía didáctica 5 o Módulo Nº 3: Números decimales MATEMÁTICA Guía didáctica NIVEL DE EDUCACIÓN BÁSICA División de Educación General Ministerio de Educación República